Greta Thunberg como personaje viralizador de los tuit del sector informativo durante la cumbre del clima COP25
Contenido principal del artículo
Resumen
El objetivo de la investigación fue determinar en qué medida los medios de información publicaron contenidos relacionados con Greta Thunberg durante la cumbre del clima COP25 y cómo fueron las interacciones de esta activista con los medios a través de la red social Twitter, además de analizar el modo en el que los medios de información se valieron del personaje para aumentar su impacto en la red social. Se clasificaron los tuits publicados por los medios de información en relación con la variable mención a Greta Thunberg, a través de pruebas estadísticas no paramétricas, y se estudió cómo los tuits que mencionaban a la activista sueca generaban más o menos engagement que los tuits que no lo hacían. Además, se analizó si el engagement de los diferentes mensajes publicados por los medios lograban engagement diferentes en función de si estos incluían elementos multimedia, URLs o sólo texto. La conclusión principal es que los tuits que incluían mención al usuario @GretaThunberg generaron mayor engagement que los que sólo incluían su nombre, además de que la activista en ningún momento interactuó con las cuentas que la mencionaron. Por otro lado, los tuits con elementos multimedia y los que nos incluían URLs generaron mayor engagement que el resto.
Descargas
Métricas
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
Bajo las condiciones siguientes:
-
Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios<. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
-
NoComercial — No puede utilizar el material para una finalidad comercial.
Citas
Alonso-Muñoz, L., & Casero-Ripollés, A. (2018). Communication of European populist leaders on twitter: Agenda setting and the “more is less” effect. Profesional de la Información, 27(6), 1193–1202. https://doi.org/10.3145/epi.2018.nov.03
Blight, M. G., Ruppel, E. K., & Schoenbauer, K. V. (2017). Sense of Community on Twitter and Instagram: Exploring the Roles of Motives and Parasocial Relationships. Cyberpsychology, Behavior, and Social Networking, 20(5), 314–319. https://doi.org/10.1089/cyber.2016.0505
Carrasco-Polaino, R., Villar-Cirujano, E., & Martín-Cárdaba, M. Á. (2018). Artivismo y ONG: Relación entre imagen y «engagement» en Instagram. Comunicar, 26(57). https://doi.org/10.3916/C57-2018-03
Chou Jen, S., Masanao, O., Takeshi, S., Ken, N., Kanji, S., Junichiro, M., & Ichiro, S. (2020). Constructive Approach for Early Extraction of Viral Spreading Social Issues from Twitter. 12th ACM Conference on Web Science, 96-105. https://doi.org/10.1145/3394231.3397899
Coddington, M., & Holton, A. E. (2014). When the Gates Swing Open: Examining Network Gatekeeping in a Social Media Setting. Mass Communication and Society, 17(2), 236–257. https://doi.org/10.1080/15205436.2013.779717
Demszky, D., Garg, N., Voigt, R., Zou, J., Gentzkow, M., Shapiro, J., & Jurafsky, D. (2019). Analyzing Polarization in Social Media: Method and Application to Tweets on 21 Mass Shootings. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1, 2970–3005. https://doi.org/10.3145/epi.2016.may.05
Estrada, A., Batanero, C., & Fortuny, J. M. (2004). Un estudio sobre conocimientos de estadística elemental de profesores en formación. Educación Matemática, 16(1), 89–111.
Guallar, J., Suau, J., Ruiz-Caballero, C., Sáez, A., & Masip, P. (2016). Redistribución de noticias y debate público en las redes sociales. El profesional de la información, 25(3), 358-366. https://doi.org/10.3145/epi.2016.may.05
Hassan, N. Y., Gomaa, W. H., Khoriba, G. A., & Haggag, M. H. (2018). Supervised Learning Approach for Twitter Credibility Detection. Proceedings - 2018 13th International Conference on Computer Engineering and Systems, (ICCES), 196–201. https://doi.org/10.1109/ICCES.2018.8639315
Herrera-Torres, J. C., Pérez-Tur, F., García-Fernández, J. & Fernández-Gavira, J. (2017). El uso de las redes sociales y el engagement de los clubes de la Liga Endesa ACB. Cuadernos de psicología del deporte, 17 (3), 175-182. https://revistas.um.es/cpd/article/view/313981
Hopke, J. E., & Hestres, L. E. (2018). Visualizing the Paris Climate Talks on Twitter: Media and Climate Stakeholder Visual Social Media During COP21. Social Media + Society, 4(3), 205630511878268. https://doi.org/10.1177/2056305118782687
Kim, J., & Hastak, M. (2018). Social network analysis: Characteristics of online social networks after a disaster. International Journal of Information Management, 38(1), 86–96. https://doi.org/10.1016/j.ijinfomgt.2017.08.003
MacFarland, T. W., & Yates, J. M. (2016). Mann–Whitney U Test. En T. W. MacFarland & J. M. Yates, Introduction to Nonparametric Statistics for the Biological Sciences Using R (pp. 103-132). Springer International Publishing. https://doi.org/10.1007/978-3-319-30634-6_4
Massey, F. J. (1951). The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46(253), 68–78. https://doi.org/10.1080/01621459.1951.10500769
McQuail, D. (2016). Mass Communication. In The International Encyclopedia of Political Communication (pp. 1–12). Wiley. https://doi.org/10.1002/9781118541555.wbiepc155
Montells, L. (2016). Engagement en Twitter: qué es y para qué sirve. Metricool. https://bit.ly/2JW459A
Nielsen, R. K., & Schrøder, K. C. (2014). The Relative Importance of Social Media for Accessing, Finding, and Engaging with News. Digital Journalism, 2(4), 472–489. https://doi.org/10.1080/21670811.2013.872420
Noor, S., Guo, Y., Shah, S. H. H., Fournier-Viger, P., & Nawaz, M. S. (2020). Analysis of public reactions to the novel Coronavirus (COVID-19) outbreak on Twitter. Kybernetes, ahead-of-print(ahead-of-print). https://doi.org/10.1108/K-05-2020-0258
Ostertagová, E., Ostertag, O., & Kováč, J. (2014). Methodology and application of the Kruskal-Wallis test. Applied Mechanics and Materials, 611, 115–120. https://doi.org/10.4028/www.scientific.net/AMM.611.115
Piñuel-Raigada, J. L. (2002). Epistemología, metodología y técnicas del análisis de contenido. Estudios de sociolingüística, 3(1), 1-42. https://cutt.ly/PfsYoDAf
Royston, P. (1992). Approximating the Shapiro-Wilk W-test for non-normality. Statistics and Computing, 2(3), 117–119. https://doi.org/10.1007/BF01891203
Segerberg, A., & Bennett, W. L. (2011) Social Media and the Organization of Collective Action: Using Twitter to Explore the Ecologies of Two Climate Change Protests. The Communication Review, 14(3), 197-215, https://doi.org/10.1080/10714421.2011.597250
Singer, J. B. (2014). User-generated visibility: Secondary gatekeeping in a shared media space. New Media & Society, 16(1), 55–73. https://doi.org/10.1177/1461444813477833
Skogerbø, E., & Krumsvik, A. H. (2015). Newspapers, Facebook and Twitter. Journalism Practice, 9(3), 350–366. https://doi.org/10.1080/17512786.2014.950471
Smith, M., Ceni A., Milic-Frayling, N., Shneiderman, B., Mendes Rodrigues, E., Leskovec, J., & Dunne, C. (2010). NodeXL: a free and open network overview, discovery and exploration add-in for Excel 2007/2010/2013/2016, from the Social Media Research Foundation. https://goo.gl/m5xRJL
Tornos Inza, E. (2020). Tasa de interacción (engagement) en Twitter. Related: Marketing. https://bit.ly/2MIC46r
Tyagi, A., Babcock, M., & Carley, K. M. (n.d.). Climate Change Debate on Twitter During COP24.