Artificial intelligence and digital advertising: persuasive discourses and citizenship in academic research
Main Article Content
Abstract
Introduction: This study presents a bibliometric analysis of the evolution of scientific production related to persuasive discourse in personalized digital advertising targeted at citizens. The aim is to examine how artificial intelligence has reshaped communication segmentation practices, introducing new theoretical, ethical, and social challenges. Methodology: A bibliometric analysis was conducted using the Biblioshiny interface (based on Bibliometrix in R) on a corpus of 141 scientific articles indexed in Scopus and Web of Science, published between 2000 and 2024. The study included productivity indicators, institutional co-authorship networks, keyword co-occurrence analysis, and thematic mapping. Results: The findings identify four consolidated research lines: recommendation algorithms, programmatic advertising, data privacy, and algorithmic segmentation. The field displays a predominantly technological orientation, limited international collaboration, and minimal integration of critical approaches focused on digital citizenship. Discussion: The evidence reveals a gap between the technical advancement of personalized advertising and the academic reflection on its social implications. This disconnect undermines the field’s potential to influence regulatory, educational, and ethical debates related to artificial intelligence. Conclusions: The study proposes a renewed, critical, and interdisciplinary research agenda centered on communication rights, transparency in automated systems, and digital literacy as priorities for future investigations in AI-mediated advertising contexts.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NonCommercial — You may not use the material for commercial purposes.
References
Arbaiza, F., Robledo Dioses, K. y Lamarca, G. (2024). Advertising Literacy: 30 Years in Scientific Studies. Comunicar, 32(78), 166-178. https://doi.org/10.58262/V32I78.14 DOI: https://doi.org/10.58262/V32I78.14
Aria, M. y Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007
Bordons, M., Aparicio, J. y Costas, R. (2013). Heterogeneity of collaboration and its relationship with research impact in a biomedical field. Scientometrics, 96, 443-466. https://doi.org/10.1007/s11192-012-0890-7 DOI: https://doi.org/10.1007/s11192-012-0890-7
Callon, M., Courtial, J. P., Turner, W. A. y Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191-235. https://doi.org/10.1177/053901883022002003 DOI: https://doi.org/10.1177/053901883022002003
Calo, R. (2014). Digital Market Manipulation. The George Washington Law Review, 82(4), 995-1051. https://digitalcommons.law.uw.edu/faculty-articles/25
Chae, B. (2015). Insights from hashtag #supplychain and Twitter analytics: Considering Twitter and Twitter data for supply chain practice and research. International Journal of Production Economics, 165, 247-259. https://doi.org/10.1016/j.ijpe.2014.12.037 DOI: https://doi.org/10.1016/j.ijpe.2014.12.037
Choi, J. A. y Lim, K. (2020). Identifying machine learning techniques for classification of target advertising. ICT Express, 6(3), 175-180. https://doi.org/10.1016/j.icte.2020.04.012 DOI: https://doi.org/10.1016/j.icte.2020.04.012
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E. y Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382-1402. https://doi.org/10.1002/asi.21525 DOI: https://doi.org/10.1002/asi.21525
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008 DOI: https://doi.org/10.2307/249008
Deng, S. S., Tan, C. W., Wang, W. J. y Pan, Y. (2019). Smart generation system of personalized advertising copy and its application to advertising practice and research. Journal of Advertising, 48(4), 356-365. https://doi.org/10.1080/00913367.2019.1652121 DOI: https://doi.org/10.1080/00913367.2019.1652121
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. y Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070
Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69, 131-152. https://doi.org/10.1007/s11192-006-0144-7 DOI: https://doi.org/10.1007/s11192-006-0144-7
Fan, T. K. y Chang, C. H. (2011). Blogger-centric contextual advertising. Expert Systems with Applications, 38(3), 1777-1788. https://doi.org/10.1016/j.eswa.2010.07.105 DOI: https://doi.org/10.1016/j.eswa.2010.07.105
Fan, T. K. y Chang, C. H. (2010). Sentiment-oriented contextual advertising. Knowledge and Information Systems, 23, 321-344. https://doi.org/10.1007/s10115-009-0222-2 DOI: https://doi.org/10.1007/s10115-009-0222-2
Floridi, L. (2022). Etica dell’intelligenza artificiale: Sviluppi, opportunità, sfide. Raffaello Cortina Editore.
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P. y Vayena, E. (2018). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28, 689-707. https://doi.org/10.1007/s11023-018-9482-5 DOI: https://doi.org/10.1007/s11023-018-9482-5
Gharibshah, Z. y Zhu, X. Q. (2021). User response prediction in online advertising. ACM Computing Surveys, 54(3), 1-43. https://doi.org/10.1145/3446662 DOI: https://doi.org/10.1145/3446662
Glänzel, W. y Schubert, A. (2004). Analysing scientific networks through co-authorship. En H. F. Moed, W. Glänzel y U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 257-276). Springer. https://doi.org/10.1007/1-4020-2755-9_12 DOI: https://doi.org/10.1007/1-4020-2755-9_12
Guzman, A. L. y Lewis, S. C. (2019). Artificial intelligence and communication: A human–machine communication perspective. New Media & Society, 22(1), 70-86. https://doi.org/10.1177/1461444819858691 DOI: https://doi.org/10.1177/1461444819858691
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569-16572. https://doi.org/10.1073/pnas.0507655102 DOI: https://doi.org/10.1073/pnas.0507655102
Jankowski, J., Kazienko, P., Wątróbski, J., Lewandowska, A., Ziemba, P. y Zioło, M. (2016). Fuzzy multi-objective modeling of effectiveness and user experience in online advertising. Expert Systems with Applications, 65(15), 315-331. https://doi.org/10.1016/j.eswa.2016.08.049 DOI: https://doi.org/10.1016/j.eswa.2016.08.049
Kaplan, A. y Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37-50. https://doi.org/10.1016/j.bushor.2019.09.003 DOI: https://doi.org/10.1016/j.bushor.2019.09.003
Kim, J. W, Lee, B. H., Shaw, M. J., Chang, H. L. y Nelson, M. (2001). Application of decision-tree induction techniques to personalized advertisements on Internet storefronts. International Journal of Electronic Commerce, 5(3), 45-62. https://doi.org/10.1080/10864415.2001.11044215 DOI: https://doi.org/10.1080/10864415.2001.11044215
Kong, X. J., Wu, Y. H., Wang, H. y Xia, F. (2022). Edge computing for Internet of Everything: A survey. IEEE Internet of Things Journal, 9(23), 23472-23485. https://doi.org/10.1109/JIOT.2022.3200431 DOI: https://doi.org/10.1109/JIOT.2022.3200431
Lambrecht, A. y Tucker, C. (2019). Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads. Management Science, 65(7), 2966-2981. https://doi.org/10.1287/mnsc.2018.3093 DOI: https://doi.org/10.1287/mnsc.2018.3093
Lee, H. y Cho, C. H. (2020). Digital advertising: present and future prospects. International Journal of Advertising, 39(3), 332-341. https://doi.org/10.1080/02650487.2019.1642015 DOI: https://doi.org/10.1080/02650487.2019.1642015
Li, H. y Xu, J. (2014). Semantic matching in search. Foundations and Trends in Information Retrieval, 7(5), 343-469. https://doi.org/10.1561/1500000035 DOI: https://doi.org/10.1561/1500000035
Long, B., Chapelle, O., Zhang, Y., Chang, Y., Zheng, Z. y Tseng, B. (2010). Active learning for ranking through expected loss optimization. En Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (SIGIR '10) (pp. 267-274). Association for Computing Machinery. https://doi.org/10.1145/1835449.1835495 DOI: https://doi.org/10.1145/1835449.1835495
Matz, S. C., Segalin, C., Stillwell, D., Müller, S. R. y Bos, M. W. (2019). Predicting the personal appeal of marketing images using computational methods. Journal of Consumer Psychology, 29(3), 370-390. https://doi.org/10.1002/jcpy.1092 DOI: https://doi.org/10.1002/jcpy.1092
Nesterenko, V., Miskiewicz, R. y Abazov, R. (2023). Marketing communications in the era of digital transformation. Virtual Economics, 6(1), 57-70. https://doi.org/10.34021/VE.2023.06.01(4) DOI: https://doi.org/10.34021/ve.2023.06.01(4)
Neumann, N., Tucker, C. E. y Whitfield, T. (2019). Frontiers: How effective is third-party consumer profiling? Evidence from field studies. Marketing Science, 38(6), 918-926. https://pubsonline.informs.org/doi/10.1287/mksc.2019.1188
Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404-409. https://doi.org/10.1073/pnas.98.2.404 DOI: https://doi.org/10.1073/pnas.98.2.404
Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E, 70(5). https://doi.org/10.1103/PhysRevE.70.056131 DOI: https://doi.org/10.1103/PhysRevE.70.056131
Perianes-Rodríguez, A., Waltman, L. y van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178-1195. https://doi.org/10.1016/j.joi.2016.10.006 DOI: https://doi.org/10.1016/j.joi.2016.10.006
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S.,… Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372(71). https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
Rogers, E. M. (2003). Diffusion of innovations (5ª ed.). Free Press.
Schwartz, E. M., Bradlow, E. T. y Fader, P. S. (2017). Customer acquisition via display advertising using multi-armed bandit experiments. Marketing Science, 36(4), 471-643. https://doi.org/10.1287/mksc.2016.1023 DOI: https://doi.org/10.1287/mksc.2016.1023
Stahl, B. C. y Eke, D. (2024). The ethics of ChatGPT: Exploring the ethical issues of an emerging technology. International Journal of Information Management, 74. https://doi.org/10.1016/j.ijinfomgt.2023.102700 DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102700
Tushman, M. L. y Anderson, P. (1986). Technological discontinuities and organizational environments. Administrative Science Quarterly, 31(3), 439-465. https://doi.org/10.2307/2392832 DOI: https://doi.org/10.2307/2392832
Wagner, C. S. y Leydesdorff, L. (2003). Mapping global science using international co-authorships: A comparison of 1990 and 2000. International Journal of Technology and Globalisation, 1(2), 185-208. https://www.researchgate.net/publication/228998769_Mapping_global_science_using_international_co-authorships_A_comparison_of_1990_and_2000 DOI: https://doi.org/10.1504/IJTG.2005.007050
Wolters, P. y Zuiderveen Borgesius, F. (2025). The EU Digital Services Act: What Does It Mean for Online Advertising and Adtech? International Journal of Law and Information Technology, 33. https://doi.org/10.1093/ijlit/eaaf004 DOI: https://doi.org/10.1093/ijlit/eaaf004
Zhang, Z. H., Jhaveri, D. J., Marshall, V. M., Bauer, D. C., Edson, J., Narayanan, R. K., Robinson, G. J., Lundberg, A. E., Bartlett, P. F. y Wray, N. R. (2014). A comparative study of techniques for differential expression analysis on RNA-Seq data. PLOS ONE, 9(8). https://doi.org/10.1371/journal.pone.0103207 DOI: https://doi.org/10.1371/journal.pone.0103207
Zuccala, A. (2006). Author cocitation analysis is to intellectual structure as Web colink analysis is to …? Journal of the American Society for Information Science and Technology, 57(11), 1487-1502. https://doi.org/10.1002/asi.20468 DOI: https://doi.org/10.1002/asi.20468